Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity.
نویسندگان
چکیده
Metnase (SETMAR) is a SET and transposase fusion protein that promotes in vivo end joining activity and mediates genomic integration of foreign DNA. Recent studies showed that Metnase retained most of the transposase activities, including 5'-terminal inverted repeat (TIR)-specific binding and assembly of a paired end complex, and cleavage of the 5'-end of the TIR element. Here we show that R432 within the helix-turn-helix motif is critical for sequence-specific recognition, as the R432A mutation abolishes its TIR-specific DNA binding activity. Metnase possesses a unique DNA nicking and/or endonuclease activity that mediates cleavage of duplex DNA in the absence of the TIR sequence. While the HTH motif is essential for the Metnase-TIR interaction, it is not required for its DNA cleavage activity. The DDE-like motif is crucial for its DNA cleavage action as a point mutation at this motif (D483A) abolished its DNA cleavage activity. Together, our results suggest that Metnase's DNA cleavage activity, unlike those of other eukaryotic transposases, is not coupled to its sequence-specific DNA binding.
منابع مشابه
The SET Domain Is Essential for Metnase Functions in Replication Restart and the 5’ End of SS-Overhang Cleavage
Metnase (also known as SETMAR) is a chimeric SET-transposase protein that plays essential role(s) in non-homologous end joining (NHEJ) repair and replication fork restart. Although the SET domain possesses histone H3 lysine 36 dimethylation (H3K36me2) activity associated with an improved association of early repair components for NHEJ, its role in replication restart is less clear. Here we show...
متن کاملSynthesis, Characterization, DNA Binding and Nuclease Activity of Cobalt(II) Complexes of Isonicotinoyl Hydrazones
Cobalt(II) complexes of isonicotinoyl hydrazones of two series of ligands have been synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic moment, mass, IR, UV spectral data. Electrochemical behavior of ligands and complexes has been investigated by using cyclic voltammetry. Cyclic voltammetric studies reveal that the oxidation/reduct...
متن کاملPotential Role for the Metnase Transposase Fusion Gene in Colon Cancer through the Regulation of Key Genes
The Metnase fusion gene consists of a SET histone methyltransferase domain and a transposase domain from Mariner transposase. This transposable element is involved in chromosome decatenation, enhances DNA repair, promotes foreign DNA integration, and assists topoisomerase II function. This study investigates the role of Metnase in colon cancer homeostasis and maintenance of the stemness phenoty...
متن کاملThe SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation
Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIalpha (Topo IIalpha), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo IIalpha inhibitors ICRF-193 and VP-16....
متن کاملTargeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy.
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 46 40 شماره
صفحات -
تاریخ انتشار 2007